当前位置:首页 > 教学资料 > 教学计划

高一数学教学计划

时间:2024-04-17 11:54:18
高一数学教学计划

高一数学教学计划

日子如同白驹过隙,不经意间,前方等待着我们的是新的机遇和挑战,一起对今后的学习做个计划吧。拟起计划来就毫无头绪?以下是小编帮大家整理的高一数学教学计划,欢迎大家分享。

高一数学教学计划1

进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

教材分析

函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

学情分析

学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

教学建议

以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

 教学目标

知识与技能

(1)能理解函数单调性、最值、奇偶性的图形特征

(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

(3)单调性与奇偶性的综合题

(4)培养学生观察、归纳、推理的抽象思维能力

  过程与方法

(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

(2)渗透数形结合的数学思想进行习题课教学

情感、态度与价值观

(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

课时安排

(1)概念课:单调性2课时,最值1课时,奇偶性1课时

(2)习题课:5课时

高一数学教学计划2

教材教法分析

本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.

学情分析

一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想.这两方面都为学习本课内容打下了基础.

教学目标

1.知识与技能

①通过具体情境,使学生感受建立空间直角坐标系的必要性

②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

③感受类比思想在探究新知识过程中的作用

2.过程与方法

①结合具体问题引入,诱导学生探究

②类比学习,循序渐进

3.情感态度与价值观

通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.

教学重点

本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.

教学难点

通过建立恰当的空间直角坐标系,确定空间点的坐标。

先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.

高一数学教学计划3

一、活动开展情景

在我县,今年的教学主体是“有效教学”,为此,我组在开展教研活动时也是紧紧围绕这一主题进行开的。在本学期内,我组主要开展过以下活动:

1、备课。本学期备课的形式主要是一个人备课为主,团体备课为辅。具体流程为个人备课→团体备课→个人备课,简称三级备课。

2、公开课。本学期的公开课主要是以每位教师不低于一次公开课的标准来执行的。公开课的开展形式与以往也有所不一样,以往的公开课仅有听课和评课两个环节,忽视了说课环节。但本学期却是把以往忽视了的说课环节也补上了,流程上将说课环节放在课前,构成了课前说课→听课授课→评课议课的模式。

3、课赛。本学期我组共参加过校外课赛一人次,获得三等奖一人次。校内不设课赛活动。

4、示范课。本学期我组上过示范课共计四人次,校内示范课三人次,校外示范课1人次。

5、数学竞赛。本学期我组共组织开展过数学竞赛一次,参赛学生达50余人,占全校学生总数的近10%。向学校申请获得专项资金710元,受益学生37人。颁发“优秀辅导教师”荣誉称号三人次。

6、学校文化建设。本学期我组特向学校申请宣传栏展板一块(近3平方米),在宣传和展

示我组的相关活动照片以及文件精神的同时,也在完善我校的学校文化建设。

7、阶段性教学质量反馈座谈会。本学期共开展过两次这类会议。

8、其他活动。外出培训学习四人次,网络培训学习6人次。全组成员外出交流学习两次,其他派代表外出交流学习三次。

二、活动成效

1、促进了教师队伍的建设和完善。本学期我组教师在以团队合作及个人努力拼搏相得益彰的结合下,经过以上一系列的活动加强了师师之间、师生之间、生生之间的沟通协调,再加以学校对本组的 ……此处隐藏17333个字……生产和生活的数学问题,并进行交流,构成数学的意思;从而经过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

3、思想教育:

培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

三、进度授课计划及进度表

(略)

高一数学教学计划15

本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。

I这是指数函数在本章的位置。

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。

Ⅱ.教学目标设置

1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。

2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。

3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。

4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。

Ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生。

1。学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。

2。达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。

3。难点及突破策略

难点:1。 对研究函数的一般方法的认识。

2。 自主选择底数不当导致归纳所得结论片面。

突破策略:

1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。

2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。

3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。

Ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。

(3)性质应用阶段,学生自主举例说明指数函数性质的应用。

研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。

Ⅴ.教学过程设计

1。创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。

[教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。

Ⅵ.教后反思回顾

一、对于指数函数概念的认识

指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。

二、对于培养学生思维习惯的考虑

在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。

三、关于设计定位的反思

本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。

《高一数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式