当前位置:首页 > 教学资料 > 说课稿

高一数学说课稿

时间:2024-04-13 11:54:18
高一数学说课稿

高一数学说课稿

作为一位杰出的老师,就有可能用到说课稿,借助说课稿可以有效提高教学效率。我们应该怎么写说课稿呢?以下是小编收集整理的高一数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学说课稿1

各位评委、老师:

大家好,我说课的内容是人教A版《普通高中课程标准实验教科书A版数学必修一》第二章2.2.2《对数函数及其性质》。

我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。

一、教材分析

本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。

《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:

知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。

过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。

情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.

结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:

重点:对数函数的概念、图象和性质;

难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;

二、学情分析

对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。

三、教学与学法

教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。

老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。

四.教学过程

教学过程分为以下环节:

实例引入、直观感知——总结类比、形成概念——类比探究、分析归纳——知识应用、提升能力——师生交流、归纳小结——作业布置

(一)实例引入、直观感知

1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.

问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数

问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数

问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.

2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。

问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)

问题四:你能类比指数函数得到此类函数的一般式吗?

设计意图:体现了类比和特殊到一般的数学思想

(二)总结类比、形成概念

问题五:你能根据指数函数的定义给出对数函数的定义吗?

(师生共同归纳出对数函数的定义)

问题六: 与 中的x,y的相同之处是什么?不同之处是什么?

设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域

(三)类比探究、分析归纳

问题:有了研究指数函数的经历,你会如何研究对数函数的性质?

设计意图:提示学生进行类比学习

合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。

合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。

设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。

教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。

合作探究3:对照指数函数的性质,总结归纳对数函数的性质.

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

(四)知识应用、提升能力

例1:求下列函数的定义域

(1) ( ) (2) ( )

(该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1) , (2) ,

(3) , (4) , ,

设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法

思考巩固:已知 ,比较m,n的大小

设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度

(五)师生交流、归纳小结

由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。

(六)布置作业

教材P73 练习1,2

设计意图:练习难度不大,是对本节知识的巩固。

高一数学说课稿2

各位领导、各位老师: ……此处隐藏24655个字……点主要有以下几方面:

1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。

2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。

以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。

3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。

本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。

4、恰当地利用现代信息技术,帮助学生揭示数学本质。

本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。整个课件都以PowerPoint为制作平台,演示Excel

程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。

七、预期效果分析

以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。

另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。

高一数学说课稿15

一、教材分析。

1、教学目标:

(1)理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

(2)培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

(3)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点:

(1)等差数列的概念。

(2)等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。

二、教法分析。

采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、教学程序。

本节课的教学过程由:(一)复习引入;(二)新课探究;(三)应用例解;(四)反馈练习;(五)归纳小结;(六)布置作业,六个教学环节构成。

(一)复习引入:

1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是cm)分别是21,22,23,24,25。

2、某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56。

3、某长跑运动员7天里每天的训练量(单位:m)是:7500,8000,8500,9000,9500,10000,10500。

共同特点:从第2项起,每一项与前一项的差都等于同一个常数。

(二) 新课探究。

1、给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

(1)“从第二项起”满足条件;

(2)公差d一定是由后项减前项所得;

(3)公差可以是正数、负数,也可以是0。

2、推导等差数列的通项公式:若等差数列{an }的首项是 ,公差是d, 则据其定义可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……进而归纳出等差数列的通项公式:= +(n—1)d

此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:– =d;– =d;– =d……– =d。

将这(n—1)个等式左右两边分别相加,就可以得到 – = (n—1) d即 = +(n—1) d

当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n—1)×2 , 即 =2n—1 以此来巩固等差数列通项公式运用

(三)应用举例。

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 :

(1)求等差数列8,5,2,…的第20项;

(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

第二问实际上是求正整数解的问题,而关键是求出数列的通项公式。

例2:

在等差数列{an}中,已知 =10, =31,求首项 与公差d。

在前面例1的基础上将例2当作练习作为对通项公式的巩固。

例3:

梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

(四)反馈练习。

1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、若数列{ } 是等差数列,若 = k ,(k为常数)试证明:数列{ }是等差数列。

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 。(由学生总结这节课的收获)

1、等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式 = +(n—1) d会知三求一

(六) 布置作业。

1、必做题:课本P114 习题3。2第2,6 题。

2、选做题:已知等差数列{ }的首项 = —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

四、板书设计。

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

《高一数学说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式